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Abstract. We consider the change in grand potential of a fluid under a deformation of its 
containing vessel. Thermodynamically, the change is expressed in terms of the pressure, 
the surface tension and the line tension of the fluid. As the change can also be expressed 
in the fluid’s microscopic properties, one obtains microscopic expressions for thermody- 
namic quantities. We consider two types of such expressions, the first one relating the 
pressure, surface and line tension to the density at the hard walls of the vessel, the second 
one relating them to the pressure tensor. Moreover, we can generalize these two types of 
expressions to a single expression which contains them both. Besides the distinction between 
surface and line tension, we consider two models of the wall: a ‘hard wall’ and a ‘structured, 
soft wall’. It is shown that the expressions for the surface and the line tension are similar 
for all types of walls. 

1. Introduction 

The behaviour of fluids near a wall has attracted considerable interest in recent years. 
Especially the question whether a fluid wets a wall or not, has been the subject of 
many investigations (for a review see, e.g., [l]). This question refers to the equilibrium 
state of the wall-fluid interface which is characterized by the surface tension, describing 
the contribution of the wall-fluid interface to the grand potential of whole system. It 
forms the basis of many theoretical descriptions of the interface and can be measured 
experimentally. There exist formal expressions relating it to microscopic properties of 
the interface. As these properties are accessible in a simulation, the surface tension 
can also be evaluated in a simulation [2]. 

In reality, two thermodynamic phases meet at a wall-fluid interface: the fluid and 
the solid which forms the wall. The atoms of the solid form a lattice, oscillating around 
their lattice positions. In this perspective, a solid-fluid interface is similar to a liquid- 
vapour interface and the same molecular expressions apply. The description of the 
interface is greatly simplified if the solid atoms are frozen in at their lattice positions. 
This simplification alters the physics of the interface only marginally in many cases. 
Such a rigid lattice is no longer a part of the thermodynamic system but serves as a 
boundary condition for the fluid. The boundary condition appears as an external 
potential acting on the fluid particles and preventing them from escaping from the 
system. Microscopic expressions have to be adapted for such an inert wall. 

This paper is addressed to the derivation of formal expressions for the surface 
tension and related quantities of an interface between a fluid and an inert wall. As a 
model for the wall we will consider two cases. 
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(a) The simplest model is a wall which is only a restriction on the positions of the 
fluid particles. The restriction is represented by an external potential which is zero at 
one side of the wall and infinite at the other side. This representation of a wall will 
be denoted as a ‘hard wall’. 

(b) A closer inert representation of a real wall is an external potential field which 
varies smoothly with the distance from the wall and the position along the wall. The 
latter variation models the lattice structure of the wall. Since a lattice is periodic, the 
external potential is taken to be periodic along the wall also. This model of the wall 
is denoted as a ‘structured, soft wall’. 

An example of a relation between a thermodynamic quantity and a microscopic 
quantity of a fluid is the connection between the density at a hard wall and the fluid’s 
pressure. Approaching a hard wall from inside the fluid, the density of the fluid changes 
discontinuously from a finite value to zero in the wall. The finite, limiting value of the 
density is called the density at the hard wall, no. It is related to the pressure p of the 
fluid by [3] 

p = kBTno (1.1) 

where k ,  denotes Boltzmann’s constant and T the temperature of the system. We call 
relations of this type between a thermodynamic quantity and the density of the fluid 
at a wall ‘density expressions’. 

In this example, the pressure is related to a surface property of the fluid. An example 
of a different kind is the classical relation [4] between the pressure and the pair 
correlation function of the bulk fluid, n , ,  

where nB denotes the density of the bulk fluid, 4(  r )  the interparticle potential for two 
particles at a distance r and + ’ ( r )  its derivative with respect to r. In this form, the 
relation holds for a three-dimensional fluid with central, pairwise additive interactions 
which is the type of fluid we will restrict ourselves to throughout this article. Relations 
such as (1.2), expressing a thermodynamic variable in essentially an integral over the 
pair correlation function, are called ‘virial expressions’. Virial expressions can often 
be formulated in terms of a ‘pressure tensor’. As an example, the virial expression for 
the surface tension of a hard wall, Yh, located in the plane z = 0 with the fluid at z > 0, 
has the form [5] 

with r ,2  = r ,  - r, ,  and n2 is the pair correlation function. In terms of a pressure tensor, 
the relation is [5] 

where pT(z) denotes the component of a pressure tensor tangential to the hard wall 
at a distance z. The pressure tensor is defined in terms of the density and the pair 
correlation function (see below). Substitution of this definition transforms (1.4) back 
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into (1.3). Relations between thermodynamic variables and a pressure tensor are 
especially useful in simulations of fluids where the tensor can be measured explicitly 
[6]. We call such relations ‘pressure expressions’. 

Formal relations between thermodynamic and microscopic quantities such as ( 1.1)- 
(1.4) can be derived from a deformation of a vessel which contains the fluid and at 
the same time provides the wall-fluid interface. The deformation results in a change 
in the grand potential of the fluid which is thermodynamically expressed in terms of 
quantities like the pressure and surface tension. On the other hand, it is possible to 
express the change directly in microscopic quantities of the fluid. The equivalence of 
the two expressions leads to microscopic expressions for the thermodynamic quantities. 
This technique has been employed in various cases. A systematic evaluation of the 
deformation method has not been given and it is the purpose of this paper. We were 
confronted with this problem when we simulated fluids contained by structured, inert 
walls which require a delicate treatment of the microscopic expressions. 

We will employ two microscopic expressions for the change in grand potential. 
The first expresses the change in grand potential in, essentially, the density at the hard 
walls. The expression gives rise to density expressions of the type (1.1). The second 
expresses the change in terms of a pressure tensor from which pressure expressions 
of the type (1.4) can be derived. In this paper, we will consider deformations of the 
vessel which result in an increase of the area of the vessel as well as an increase of 
the length of the edges. Therefore, the change in grand potential involves both the 
surface and the line tension and density and pressure expressions will be derived for 
both these quantities. 

The deformation is applied to the two models of a wall we mentioned above. At 
first, a vessel of hard walls is considered and secondly, one of the hard walls is replaced 
by a structured, soft wall. We thus obtain density and pressure expressions for the 
surface tension of a hard wall and the line tension of an edge formed by two hard 
walls. In the case of the soft wali, we restrict ourselves to the surface tension since 
already at this level, a rigorous treatment of the effect of the structure turns out to be 
complicated. 

The article is further organized in the following way. We introduce the concept of 
the pressure tensor and the two routes to the change in grand potential in section 2. 
Before we start the actual calculation, we give some comments on the definition of 
the surface and line tension in section 3. The first route to the change in grand potential 
is then exploited in section 4, which derives the density expressions. The second route 
is exploited in sections 5 and 6, in which the pressure expressions are presented. Section 
5 treats the hard wall and the edge formed by two hard walls and section 6 treats the 
case of the structured soft wall. Finally, conclusions are drawn in section 7 .  

2. The pressure tensor and the change in grand potential 

The concept of a pressure tensor has long been present in phenomenological descrip- 
tions of inhomogeneous fluids [4]. The concept has been formalized by Schofield and 
Henderson [7], who gave a microscopic definition of the tensor which they could link 
rigorously to the change in grand potential of a fluid. For a simple fluid, the microscopic 
definition is 

p( r )  = k,Tn(r)l -1 dr ,  dr2 % 4’(r ,*)n2(  rl  , r2) d l  6 ( 1 -  r )  (2.1) 
cs 

2 -a r12 
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where I denotes the unit tensor and C,, is a contour from r2 to r , .  This contour can 
be chosen arbitrarily and therefore the pressure tensor is not defined uniquely. The 
most obvious choice for the contour is a straight line from r2 to r , ,  a choice which is 
referred to as the Irving and Kirkwood [8] ( I K )  tensor. An alternative choice has been 
investigated by Harasima [9] who took the contour to be a straight path from r ,  to 
(x,, y,, z,) followed by a straight path to r 2 .  Clearly, each expression of a physical 
quantity in terms of a pressure tensor, like (1.4), must be independent of the choice 
of the tensor. It can furthermore be shown that the divergence of all tensors (2.1) satisfies 

V*p(r )  = - n ( r ) V 4 e x t ( r )  (2.2) 

where 4ex t ( r )  denotes the external potential acting on the fluid. 
The tensor (2.1) can be used to describe the change in grand potential of a fluid 

when the container of the fluid is deformed. Schofield and Henderson discussed these 
deformations in the canonical ensemble, preserving the amount of particles in the 
system. It is, however, easy to show that the expression for the change in free energy 
that they obtain applies equally well to the change in grand potential. This thermody- 
namic potential has to be considered if the deformation is brought about in the grand 
canonical ensemble under constant chemical potential. Instead of considering the 
canonical partition function ZN of a system of N particles 

1 
ZN =* 1" dr , ,  . . . , drN e-pu, (2.3) 

where A denotes the thermic wavelength, U,  the energy of a configuration of N 
particles 

uN(rl, * ' ' , rN) = c 4(r , )+C 4ext(r!)  
( I J )  I 

one has to consider the grand canonical partition function Z,, given by 
33 

Z,,=l+ Z"ZN 
N = 1 

with z the activity, related to the chemical potential p by 

(2.4) 

(2.5) 

z = ePF. (2.6) 

fl=-k,TlogZ,, .  (2.7) 

The grand potential is calculated from Z,, as 

The integration volume V in (2.3) defines the position space in which the particles are 
allowed to move. If the external potential becomes strongly repulsive near the bound- 
aries of V, the available position space is effectively defined by this potential since it 
prevents particles from intruding up to the boundaries. The volume is then bounded 
by soft walls and the precise location of the boundaries of V does not influence the 
physical behaviour of the system. If there is no external potential to prevent the particles 
from reaching the boundaries of V, the volume is bounded by hard walls. In this case, 
the boundaries of V, i.e. the position of the hard walls, cannot be changed without 
changing the physical behaviour of the system. In general, the volume can be bounded 
by a combination of soft and hard walls. 

Schofield and Henderson considered the change in the partition function under an 
infinitesimal deformation of the integration volume V.  The deformation is described 
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by an infinitesimally small displacement field u ( r )  which shifts the boundaries of V 
from their original positions { r }  to new positions { r +  u ( r ) } .  We consider only cases 
in which 4'" is not affected by the application of a displacement field, which implies 
that any soft wall remains in place and the deformation affects the hard walls only. 
The change in grand potential can, up to order U, be described by the one- and 
two-particle correlation function 

dR = 1 dr( - k B T V  U( r )  + U( r )  *Vr,bex'( r ) ) n (  r )  
V 

However, it can equally well be described [ 7 ]  by the pressure tensor (2.1) 

dR = - d r (  p( r )  : V u (  r )  - n ( r )  U( r )  * V de''( r ) )  

+ la dS(P(r)  - k~ Tn(  r)l) * U(r). 

1 
(2.9) 

The second integral is over the surface of V. If the surface is shielded by a soft wall, 
the density at the surface will be zero since particles never reach the boundary of V 
in that case. Therefore, for any reasonable choice of contour, the pressure tensor will 
also be zero at a soft wall, and thus soft walls do not contribute to the surface integral. 
At a hard wall, the pressure tensor p(r)  becomes equal to k B T n ( r ) l  for a large class 
of contours. Each contour which does not intersect the wall belongs to this class. Note 
that the I K  and the Harasima tensor both fulfil this condition (if the walls are in the 
xy, xz or y z  plane). Therefore, for this class of tensors, hard walls also do not contribute 
to the surface integral which then does not contribute to dR at all. So the change in 
grand potential is, up to first order in U, fully given by 

dR = - d r ( p (  r )  : V u (  r )  - n (  r ) u (  r )  -V+ext(  r ) )  (2.10) 1" 
if the pressure tensor at a hard wall d V,, reduces to 

p( r, d vb) = kB Tn ( V, d vh) I. (2.11) 

We will restrict ourselves to tensors satisfying (2.1 1 )  in the remaining part of this paper, 
which means that only reasonably simple contours will be considered, typical examples 
of which are the I K  and the Harasima contour. 

Equation (2.10) is what we referred to as the 'pressure route' to dR. The 'density 
route' to dfl  is easily obtained from (2.9) if the combination nV+ext  is replaced by 
-V.p, in accordance with (2.2). Partial integration of the resulting term gives 

dR = -kB T IaV dS. U( r ) n  ( r )  (2.12) 

which expresses dR entirely in terms of the density at the wall. The equation shows 
that if the volume is bounded by soft walls everywhere, the grand potential does not 
change since the density vanishes at a soft wall. This must be so because in that case 
the boundaries of V can be distorted without changing the physical behaviour of the 
system. Equation (2.12) also shows that dR does not depend on the value of U in the 
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interior of V. This reflects the fact that the deformation is determined by the value of 
U at the boundary of V only. In particular, R does not change if U vanishes at the 
boundary of V since in that case, the integration volume is not distorted at all. Equations 
(2.8), (2.10) and (2.12) denote three different but equally valid ways to express the 
change in grand potential under a deformation U of the boundaries of the fluid. 

3. The definition of the surface and line tension 

Consider a fluid in a three-dimensional, rectangular box which consists of hard walls. 
The grand potential of the fluid is defined by (2.3)-(2.7) with dext(r)=O. As we 
mentioned in section 1, the surface tension Y h  of the hard walls and the line tension 
T~~ of the edges of the box can be defined from the change in the grand potential 
under a well chosen deformation of the box. An alternative definition of these quantities 
is obtained from a decomposition of the grand potential in terms of the order of the 
volume V, the size of the surface A h ,  and the length of the edges L,, of the box 

= fl,+Rs+fiE. (3.1) 

Expansion (3.1) could become ambiguous if p and Y h  depend too strongly on the 
system size, e.g., approach their thermodynamic value inversely proportional to the 
h e a r  size of the system. If, however, p and Y h  in a finite system are defined in terms 
of local quantities such as in (1.2) and (1.4), it is reasonable to assume that the influence 
of the size of the system is exponentially small. This assumption does probably not 
hold near criticality, where the distinction between pressure and surface tension should 
be carefully reanalysed, which is beyond the scope of this paper. 

To be complete, we should have added a term of order 1 to (3.1) to include the 
contributions of the corners of the box to the grand potential. Such contributions, 
however, will not be studied in this article and therefore we neglect them. R,, Rs and 
R E  define the pressure, surface tension and line tension 

n, = -pv (3.2) 

f i S  = Y h A h  (3.3) 

RE= T h h L h h .  (3.4) 

The geometry of the box is the geometry of the integration volume in (2.3). Changes 
in the volume induce changes in the grand potential. Consequently, the proportionality 
factors p ,  Y h  and T h h  are unambiguously defined. 

These notions may appear somewhat trivial but more care is needed when soft 
walls are involved. Consider the same box as before with one of the hard walls, taken 
to be in the plane z = 0, replaced by a soft wall. Contributions from the hard wall to 
the grand potential must now be distinguished from contributions from the soft wall 

R s =  Y s A s + Y ~ A ~  (3.5) 

with ys and A, the surface tension and the area of the soft wall. Similarly, the 
contributions from the edges formed by two hard walls must be distinguished from 
the contributions from the edges formed by a hard and a soft wall 

R E =  7 s h L s h + T h h L h h  (3.6) 
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with T,h and Lsh the line tension and length of the edges formed by a hard and a soft 
wall. Contrary to the previous case, the lower limit on the z-integrations in (2.3) can 
be shifted without affecting Z,. The geometry of the box, however, does change under 
such a shift. If the lower boundary is shifted from z = 0 to z = Sz, the geometric changes 
in the box are 

so 

(3.7) 

6 n E  = 8Tsh Lsh - 4  Thh 6z. (3.10) 

Note that p ,  Yh and Thh  do not change because they were completely specified by the 
temperature and the chemical potential, which remain of course unaltered by the shift 
Sz in the boundary of the box. Since ZN does not change, the grand potential of the 
fluid does not change. Adding (3.8), (3.9) and (3.10) gives 

(3.11) 

In (3.11) we have neglected the term Thh8z which is of the order 1. The two terms in 
(3.11) are of a different orders of magnitude and must vanish separately 

ay, = -p Sz (3.12) 

STSh = Yh Sz. (3.13) 

These equations demonstrate that the magnitude of ys and Tsh depends on the location 
of the lower boundary z = 0 of the box. The dependence is trivial in the sense that, 
e.g., ys varies linearly with the position of the boundary with a coefficient which is not 
an intrinsic property of the surface but can be determined from the bulk state of the 
fluid alone. Note also that in, e.g., the study of surface phenomena at a fixed wall the 
absolute value of the surface tension is never of importance but only the difference in 
surface tension between competing interfaces. For instance, in the wetting problem, 
the coexisting liquid and vapour phases, competing to wet the wall, both have the 
same bulk pressure p and thus the difference in surface tension is independent of 
the location of the lower boundary z=O. Although the dependence of ys and 7,h on 
the location of the boundary forces one to treat the boundary carefully, they remain 
central parameters in the description of interfaces and contact lines. 

= (pa2  + 8ys)As + (yh8Z - 8Tsh)Lsh + o( 1) = 0. 

4. Density expressions 

Relations between thermodynamic and microscopic quantities of the fluid will be 
obtained from deformations of the box which contains the fluid. The box we will use 
throughout this paper has dimensions 0 -s x,  y ,  z s L. The wall in the plane z = 0 is the 
wall of interest. It will be taken to be a hard wall in this section. The five remaining 
walls will always be taken to be hard walls. The box is deformed according to the 
displacement field 

U( r )  = A ( X  - L, y - L, z).  (4.1) 
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The parameter A makes U infinitesimally small. This displacement field transforms the 
box from a cube with edge length L to a cube with edge (1 +A)L.  To obtain density 
expressions, expression (2.12) for the change in grand potential is exploited, which 
expresses the change in the density at the walls 

dR = -kBT dS.u(r)n(r) .  (4.2) I, 
The product dS.  U vanishes at the planes x = L, y = L, and z = 0. Only the three 
remaining walls contribute to the integral (4.2). 

The change in grand potential in this box with six hard walls is given by 

d n = - p  dV+y,dAh+ThhdLhh. (4.3) 

dV=3AL3 dAh = 12hL2 dLhh= 12AL. (4.4) 

With displacement field (4.1), the changes are 

The thermodynamic expression (4.3) for dCl has to be compared with the microscopic 
expression (4.2). The three walls that contribute to (4.2) give the same contribution. 
Take the wall x = 0 as an example: 

dCl = - 3 k ~ T h L  joL dy 5,’ dz n(0 ,  y ,  z).  (4.5) 

Note that the thermodynamic expression (4.3) consists of different orders of L. The 
term of order L3 determines p ,  the term of order L2 determines Yh and the term of 
order L determines T h h .  We also decompose (4.5) in orders of L. The decomposition 
is obtained from a decomposition of the density. Define the density at the wall, n, 

n w ( Y ,  2 )  = n(0 ,  y ,  z). (4.6) 
This density has a constant value no far away from the edges and corners at the wall 
x = 0. The density is distorted by the presence of neighbouring walls within some 
microscopic length 5 of the edges. The distortion near an edge, far away from a corner, 
is denoted An,. The additional distortions near a corner are denoted An,),. The 
decomposition of n, has the form 

n w ( Y ,  2 )  = nOfhn l , (y )+Anh(z ) fAnhh(y ,  z, (4.7) 
where Anh(y) denotes the correction near an edge formed with a wall in the xz plane, 
Anh(z) the correction near an edge formed with a wall in the xy plane. A correction 
term vanishes if its argument, or one of its arguments, is chosen far away from the 
edges. We denote such positions, i<< y ,  z < fL, as y ,  z approaching infinity. Taking, 
e.g., y and z to infinity, (4.7) gives the definition of no 

no = n,(m, m). (4.8) 

A n h ( Z )  = nW(a3, Z )  - no (4.9) 

Taking only y to infinity, (4.7) gives the definition of A n h ( z )  

while Anhh is defined by (4.7) itself. Substitution of decomposition (4.7) into (4.5) gives 

d f l = - A k B T 3 L ( J o L d y d ~ n o + 2  Josdg l o L d z A n h ( y ) + 2  ipd. joLdyAnh(z)  

1-4 loc dY JOE dz Anhh(L’, .))e (4.10) 
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The factor of 2 in front of the integral over Anh  accounts for the fact that there are 
two walls in both the xz and xy plane bordering on the wall at x = 0. The factor of 4 
in front of the integral over h n h h  accounts for the fact that there are four corners at 
this wall. The symmetry between the walls implies that the integral over Anh(y) gives 
the same contribution to di2 as the integral over Anh(z). Decomposition (4.10) is the 
decomposition of d i l  in orders of L 

d f i =  - h k ~ 7 3 L (  L2i10+4L lox dz Anh(Z)+4 lox dy dz hnhh(y, Z) )  

comparison with (4,3) shows that 

(4.11) 

p=kgTno (4.12) 

(4.13) 

(4.14) 

which are the desired density expressions. The first of these was already quoted in 
(1.1). It is seen to be the first of a hierarchy of three which relate the pressure, surface 
tension and line tension to the density at a hard wall. 

These density expressions do not only exist in the case of corners and edges formed 
by hard walls. It can be shown in the same manner that the molecular expressions 
(4.13) and (4.14) also apply when the hard wall at z = 0 is replaced by a 'structureless 
soft wall'. This is a representation of a wall as an external field which varies smoothly 
with the distance from the wall but which does not vary along the wall. In the 
structureless, soft wall case, Yh  in (4.13) should be replaced by y s ,  the surface tension 
of a structureless soft wall, and Thh in (4.14) by 7 , h ,  the line tension of an edge formed 
by a hard and a structureless soft wall. We will stipulate in section 6 that density 
expressions also hold in case when the wall at z = 0 is a structured soft wall, but that 
they are more complicated. 

In general, we can therefore state that the deviations of the density at a hard wall 
near an edge formed by the hard wall and a second wall are related to the surface 
tension of that second wall. Similarly, the deviations of the density at a hard wall near 
a corner formed with two other walls are related to the line tension of the edge formed 
by the two other walls. 

Finally, note that the density at a soft wall can also be related to thermodynamic 
quantities of the fluid. Such density expressions can be derived from a deformation 
which also shifts these walls. In that case, the displacement field does not only affect 
the boundaries of V but also the external potential which forms the soft wall. An extra 
term must be added to (2.12) to account for this shift, and density expressions can 
then be derived from the modified (2.12) in the way demonstrated here. As an example, 
one easily notices that the relation between the pressure and the density near a 
structureless, soft wall is given by 

p = - j d l d z n ( z ) - ~ # ~ ~ ~ ' ( z )  a 
a Z  

(4.15) 

since the RHS denotes the force per unit of area which the wall exerts on the fluid. 
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5. Pressure expressions for the surface and line tension: hard wall 

In this section, we exploit route (2.10) to the change in grand potential which leads 
to relations between thermodynamic quantities and the pressure tensor of the fluid. 
The box and displacement field are the same as in section 4. The wall in the plane 
z = 0 is taken to be a hard wall in this section. 

The thermodynamic expression for dR is given by (4.3) while on the other hand, 
equation (2.10) with 4 e x t ( r )  = 0, states 

d o = -  d r p ( r ) : V u ( r ) .  1" (5.1) 

With displacement field (4.1), the tensor V u  has the simple form 

V u ( r )  = A l .  (5 .2)  

Our strategy is the same as in the previous section: we split the microscopic expression 
(5.1) in orders of L. On comparison with (4.3), the term of order L2 gives the microscopic 
definition of Y h ,  the term of order L the definition of 7 h h .  The decomposition of (5.1) 
in orders of L is obtained from a decomposition of the pressure tensor. 

This decomposition is similar to the decomposition of n ,  of the previous section. 
The tensor is translationally invariant and isotropic in the bulk fluid 

where p denotes, as usual, the bulk pressure. Near the walls, within some microscopic 
length f ;  p deviates from pB.  The deviation near a wall, far away from edges and 
corners, is denoted as Aph. The additional deviations near an edge are denoted as 
hphh. The influence of the corners is denoted as APhhh. The decomposition of p in the 
corner x, y, z 3 0 has the form 

p(r)  = PB+APh(x)SAph(y)+APh(Z)SAPhh(x, Y)+APhh(X, z, 

The correction terms Ap vanish if one of their arguments is taken far away from the 
walls. We denote such positions, l<< x, y, z < iL,  as x, y, z approach infinity. With x, 
y and z in this limit, (5.4) becomes the definition of pB 

PB = p(m, m). 

Taking x and y to infinity, one obtains the definition of Aph 

( 5 . 5 )  

APh(z)=P(co, z)-PB. (5 .6 )  

Taking only x to infinity, one obtains the definition of Aphh 

(5.7) 

The definition of APhhh is (5.4) itself. The decomposition (5.4) of the pressure tensor 
is inserted in (5.1). This integral splits in an integral involving pB,  six integrals involving 
Aph (resulting from the deviations of p near the walls), twelve integrals involving hphh 
(from the deviations near the edges) and eight integrals involving APhhh (from the 
deviations near the corners). The six integrals involving Aph give the same contribution 
to dR by symmetry. We take the deviations near the wall z = 0 as exemplary. Similarly, 
we take the deviations near the edge formed by the wall at z = 0 and y = 0 as exemplary 
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for the twelve edges. The corner formed by these two walls and the wall at x = 0 is 
taken as exemplary for the eight corners. The decomposition of (5.1) has the form 

d R =  -A(  loL dx loL dy loL dZpB: l + 6  loL d x  loL dy Jom dz  Aph(Z): I 

12 loL dx lom dy loE dz APhh(y, 2 ) :  I 

E daB + d a h  f dnhh + dRhhh (5.9) 

(5.9) is the expansion of dR in orders of L. With the definition of pB,  (5.3), the first 
term is easily calculated 

dRB = -ApL3.  (5.10) 

Compared with the term of order L3 in (4.3), (5.10) shows that the constant p which 
defines ps is indeed equal to the pressure of the fluid. The second term, d a h ,  is 

d n h = - 6 h  L2 loX dz(Ap;;”(z)+Apr(z)+Apr(z)) (5.11) 

which is of the order L2. The third term, dRhh,  is 

(5.12) 

which is of order L. The last term, diRhhh, is 

dahhh = -8A lom dx loX dy lom dz(Apcih(x, y ,  + AP:ih(X, y ,  z) 

+AP;IZhh(X,Y, 2 ) )  (5.13) 

which is of the order Lo. First, we will discuss the term d a h  to extract the definition 

Comparison of d a h  with the term of order L2 in the thermodynamic expression 
of Yh. 

for dR, (4.3), gives for the microscopic definition of Yh 

(5.14) 

This expression can be simplified. It can be shown that the term Apt’ vanishes (see 
(Al . l )  in appendix 1) while Ap;;”(z) = ApiY(z) by symmetry. We define 

(5.15) Ap%( z) = Apy( z) = Ap;f(z) 
and (5.14) simplifies to 

In terms of pT and p it has the form 

(5.16) 

r m  
(5.17) 
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This form is the usual expression [4] for Y h .  It was already mentioned, in a slightly 
different notation, in (1.4). Before we proceed to the term of order L in dfl, we will 
derive an extension of (5.16) or (5.17).  

The path of integration in (5.16) and (5 .17 )  must be taken far away from the edges 
of the system. The deviation of pT from its bulk value p results from the presence of 
the wall at z = 0 only. We ask the question what happens if the path of integration is 
chosen close to an edge and the influence of the edge on p is taken into account. 
Consider, as an example, the edge formed by the walls at y = 0 and z = 0. Define 

r6(u) = -Io= dz(ApA’(z) + A P X Y ,  z)). (5.18) 

The integrand of (5.18) is 

APiy(z)+AP;yh(Y, z ) = p ” ( ~ , y ,  Z1-P. (5.19) 

Identity (A1.2) in appendix 1 shows that 

’Y?(y) = Yh (5.20) 

for all distances y. For large y ,  the term ApKi vanishes and (5.18) reduces to (5.16). 
At the hard wall y = 0, p y y  is equal to kBT times the density at the wall, cf (2,11), and 
(5 .18)  becomes the density expression (4.13). Expression (5.18) is a generalization 
which contains both the pressure expression (5.17),  at y = 00, and the density expression 
(4.13), at y = O .  

We proceed with the term of order L in (5 .9 ) ,  dRhh given by (5.12). Comparison 
with the term of order L in the thermodynamic expression for the change in grand 
potential, (4.3), gives the microscopic definition of f h h  

r m  rcc 

(5.21) 

The second and third terms in the integral vanish (see (A1.2)) and the definition of 
Thh simplifies to 

(5.22) 

which has precisely the same structure as the definition (5.16) of Y h .  

The plane of integration in (5.22) is taken far away from a corner: the integrand 
is determined by the presence of the edge alone. Analogous to the case of the surface 
tension, the plane of integration in (5.22) can be taken close to a corner. One can show 
this by defining 

Y;i(x)=-i]lcdl jox dz(Ap;”h(y, Z)+APhxxhh(x, y ,  z ) )  

and demonstrating (see (A1.3)) that T ; ~ ( x )  is independent of x: 

(5.23) 

Tit(x) = T h h .  (5.24) 
In the limit that x is large, Ap;th vanishes and (5.23) reduces to (5.22). At the wall 
x =0,  p”” satisfies (2.11) and (5.23) reduces to density expression (4.14). plays the 
same role for the line tension as y i y  played for the surface tension. It can be regarded 
as an expression that interpolates between the density expression (4.14), at x = 0, and 
the pressure expression (5.22), at x = W .  
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Finally, we consider the term of order Lo, dnhhh, in (5.9) which is defined in (5.12). 
Identity (A1.3) tells that the integral over each term in the integrand of (5.12) vanishes 

dflhhh = 0 (5.25) 

in accordance with the fact that no terms of the order Lo appears in the thermodynamic 
expression for the change in grand potential, (4.3). These terms are absent because 
the corners are not deformed by displacement field (4.1). 

6. Surface tension of a structured wall 

Up till now, we have restricted ourselves to hard walls. The case of a structured, soft 
wall will be treated in this section in which we focus on the pressure expressions. 
Density expressions also exist but are far less elegant than in the structureless case, 
as we discuss below. Moreover, the discussion will be restricted to the level of the 
surface tension alone since already at this level, the calculation is much more compli- 
cated than for the hard wall. 

The box and displacement field are the same as in the previous sections with the 
wall at z = 0 replaced by a structured, soft wall. Such a wall is periodic and we denote 
the length of the period in the x direction by a,, the length in the y direction is a,. 
The change in grand potential upon the deformation equals 

df I=-pdV+y, t (L)  dA,t+yhdAh+O(L) (6.1) 

(6.2) 
A,, denotes the surface of a structured wall, y,, its surface tension (the subscript st 
stands for ‘structured’). Terms of the order L are neglected since we restrict the 
discussion to the level of the surface tension. The increase d V is the same as previously, 
A,, and Ah change as 

dR, + dfI,, + doh + O( L). 

dA,, = 2A L2 dAh = 10A L2. (6.3) 
Because of the structure of the wall, the change in grand potential under an 

infinitesimal shift of the boundary planes at x, y = 0 will depend on the location of 
these planes. The walls at x = L and y = L remain in place under displacement field 
(4.1). The shift defines a ‘partial surface tension’ y,,(L). To obtain the ‘full’ surface 
tension ySt of the structured wall, one should consider an increase of A,, with an integer 
number of units of area a, x ay. This increase is most easily visualized if a, = ay = a, 
in which case one can simply increase L with a periodic length a. For simplicity, we 
consider this case; the case a, f; a,, presents no conceptual difficulties. From time to 
time, we will again distinguish in the notation between U, and a, to show what the 
result is for the general case. 

Considering an increase of L with one period, the increase of A,, equals 

AA,, = 2aL+ O( Lo) (6.4) 
and the surface tension of the structured wall is 

using that dR,, = 2A ySt( L’)L’* and dL’= AL’. The term of order L-’ vanishes in the 
thermodynamic limit. 



4224 M J P Nijmeijer and J M J van Leeuwen 

If we try to obtain a density expression for the surface tension of a structured wall, 
we readily find that the density at the hard walls is related to y,,(L). Therefore, a 
density expression for yst also incorporates a shift of the walls over a complete periodic 
length. In other words, the density expression incorporates an average over all possible 
locations of the hard wall within a period a as in (6.5). This average makes the density 
expression far less elegant than the density expression (4.13) for a hard wall. This is 
the reason why we do not consider them further. 

The microscopic expression (2.10) for the change in grand potential contains the 
extra term nu.V4eXtas compared to (5.1). With displacement field (4.1) it takes the form 

a 
u(r)  .Vq5'"'(r) = A 

The pressure tensor is decomposed in the same fashion as in (5.4) but one has to 
distinguish between distortions of p near the hard walls and distortions near the soft 
wall. The distortions near the soft wall, far away from the corners and edges, are 
denoted Ap,. The distortions near an edge formed by the soft and a hard wall are 
denoted Ap,,. The distortions near a corner formed by two hard walls and the soft 
wall are denoted hpshh. Decomposition (5.4) is replaced by 

P(x, y ,  z) = PB+APh(X)+Aph(y)+APs(X, y ,  z)+APhh(x, y ) s A P ~ ~ ' ( x ,  y ,  2) 

+APbi'(x, y ,  z)+APshh(x, y ,  z)* (6.7) 

Note that the correction terms Ap involving the soft wall are functions of all three 
coordinates x, y ,  z, due to the periodicity of the wall. Therefore, we have to distinguish 
between Ap;:' referring to the edge formed by the walls at z = O  and x=O and Apli' 
referring to the edge formed by the walls at z = 0 and y = 0. The correction terms vanish 
far away from the walls, at positions 5 < x, y ,  z < i L  which we denote as (2, y, CO). 

Taking, e.g., x and y far away from the hard walls, (6.7) gives the definition of Aps 

APs(2, 9, z, = P(2, 9, z, - PB. (6.8) 
The periodicity of 4ext is reflected in Ap, : it is a periodic function with, in the general 
case a, # ay, a period a, in the x direction and a,. in the y direction. 

Inserting the decomposition of p in (2.10), we obtain decomposition (6.2) of dR 
with dRB given by (5.8) and 

r L  r =  r L  

d R h = - 5 J o  d x  J, dy J dzAph:Vu 
0 

dz(Ap,: V u -  nu.V4ext). 
0 

(6.10) 

Note that we did not decompose the density but included the term nrr.V+'"' in (2.10) 
completely in dR,, . As it will turn out, we can do so as long as we restrict the discussion 
to the level of the surface tension. The correction terms Ap that involve edges or corners 
contribute to the order L just as in the previous section and are therefore not evaluated 
any further. 

There are five terms Ap,, from the five hard walls. They contribute equally to 
dR and we took the plane y = 0 as an example to represent d R h .  With (5.2), this 
contribution is 

d a h =  -h5L2  lox d y ( h p ~ ( y ) f A p Y h " ( y ) + A p ~ ( y ) ) .  (6.11) 
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From (5.14) we find 

d o h =  A')'h10L2 (6.12) 

which shows that the definition (6.9) of d o h  is indeed equal to the original definition 
in (6.2). The remaining term of order L2 in the thermodynamic expression (6.2), dR,,, 
must therefore be equal to (6.10). 

The factor u . V 4 e x t  in do,, consists of three terms: besides the term involving zd,, 
the structured character of the wall has introduced a term involving (x-L)d, and 
( y  - L)d,, (see (6.6)). The integral over nzd,4ext is easily evaluated. This integrand is 
periodic far away from the hard walls. Therefore, all units of area far away from the 
hard walls contribute equally to the integral, which is thus of order L2. Similarly, all 
units of area far away from the hard walls contribute equally to the integral over 
Ap,: Vu, which is therefore also of order L2. 

The integrals over n (x - L)d,4e"' and n ( y  - L)d,,r$'"' are more difficult to evaluate. 
These integrands are not periodic and, moreover, they become of order L near the 
walls at x = 0 and y = 0, respectively. Therefore, it seems as if the integrals are of order 
L3. This is, however, not the case: one can prove that although the integrands are not 
periodic, each unit of area far away from the hard walls still gives the same contribution 
to the integral. This follows immediately from the fact that the integrals of ndx4ext  and 
nd,4e"t over a unit of area in the middle of the soft wall vanish (see (A2.1)). As all 
units of area far away from the hard walls contribute equally to the integrals over 
n(x - L)~,#I'"' and n(y - ~ 5 ) d , + ~ " ' ,  these integrals are of order L2. The fact that the 
integrand becomes of order L gives these integrals a remarkable feature: the deviations 
of the density near the walls at x = 0 and y = 0 contribute to the order L2. We therefore 
split dR,, into two terms 

d 
dR,, = - L2 - lce,l dx dy Iox dz(Ap,(r): Vu-Azn,(r) - +ext(r))  

% a y  dZ 

(6.13) 

where a cell stands for an area a, x a, far away from the hard walls. n, denotes the 
density at positions far away from the hard walls, such that the density is affected by 
the soft wall only. Dividing (6.13) by 2ALZ, we obtain from (6.1) 

+ I I o L d x  2 L2 l o L d y  ax 

(6.14) 

To obtain yst, y,,(L') has to be averaged over all values of L' between L and L + a  as 
indicated in (6.5). The first integral in (6.14) does not depend on the location of the 
hard walls but is entirely given by the properties of the fluid in the middle of the soft 
wall. The average (6.5) of this integral over different locations of the wall is therefore 
trivial. The second integral, however, does depend on the location of the hard walls 
since the density in the edges, which contribute to order Lo, depends on it. Some 
knowledge about the density in the edges is necessary in order to be able to perform 
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the average. In appendix 3 we show, by using an expansion of the density in the 
activity, that the average (6.5) over the second term in (6.14) vanishes. Thus we find 

(6.15) 

The integral over Ap:‘ cancels against the integral over znsd,+ex‘ (see (A2.2)j and the 
expression for yst  simplifies to 

(6.16) 

Instead of displacement field (4.1) we could have used a displacement field that shifts 
the wall at x = 0 or y = 0 only. In that case, we would have obtained 

(6.17) 

which shows that the integrals over a unit of area of Ap:” and Api” are equal. 
We conclude this section with a consideration of the dependence of ys on the lower 

boundary z = 0 assigned to the system. This dependence was discussed in section 3, 
where it is made explicit in equation (3.12). The same dependence must appear in the 
microscopic definitions (6.16) and (6.17) of y,. The integrands that appears in (6.16) 
and (6.17) take the value -p at z = 0, cf (6.8). If we shift the lower boundary by an 
amount 6z, the integral changes by an amount 

6y, = -p 6z (6.18) 

which is equal to (3.12). 

7. Summary and conclusions 

We have derived microscopic expressions for the surface and line tension of solid-fluid 
interfaces. They were obtained from a careful analysis of the change in grand potential 
under a deformation of the fluid’s vessel. These expressions fall into two classes: 
density expressions and pressure expressions. The density expressions relate thermo- 
dynamic quantities to the density at a hard wall, the pressure expressions relate them 
to the pressure tensor. 

Density expression (1.1) for the pressure was already well known [3] and it is 
shown in this paper that it is the first in a hierarchy of three expressions, the second 
involving the surface tension, the third the line tension. Density expressions for the 
surface tension relate the density at a hard wall near an edge, to the surface tension 
of the wall which forms the edge with the hard wall. The second wall can be either a 
hard or a structureless soft wall, the density expression in both cases has the form 

y = -k,T lom dz A n ( z )  

cf (4.13). The second wall can also be a structured, soft wall, in which case An(z) 
depends on the location of the hard wall in the elementary area which is defined by 
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the structured wall. If, e.g., the hard wall is placed in the y z  plane, the RHS of (7 .1)  
should be averaged over all locations of the hard wall within the periodic length in 
the x direction to obtain the density expression for the structured, soft wall. 

Density expressions for the line tension have precisely the same form as (7.1). They 
relate the density at a hard wall near a corner to the line tension of the edge which 
stands tangential to the hard wall and terminates in the corner. The expression is 

cf (4.14). The validity of (7.2) has been proven in the cases that the edge is formed 
by two hard walls. One can demonstrate that it also holds in the case of an edge 
between a hard and a structureless soft wall and for an edge between two structureless, 
soft walls. We did not consider edges which involve a structured wall. However, we 
have no reason to assume that anything else but the same averaging as in the case of 
the surface tension has to be applied to (7.2) in that case. In general, density expressions 
also exist near soft walls, as discussed at the end of section 4, but we did not pursue 
them in this paper. 

The pressure equation for the surface tension is also well known [ 5 ] .  It is 

y = - lom dz ApT( z )  (7.3) 

which holds for both a hard and a structureless soft wall, see (5.16). The derivation 
of a pressure equation for the structured, soft wall is much more complicated, but the 
result is a straightforward extension of (7 .3) .  In the case of a structured wall, ApT also 
depends on the position along the wall and we have shown that the RHS of (7.3) has 
to be averaged over a unit of area to obtain the pressure equation for the structured wall. 

Pressure equations for the line tension have again the same form as the equation 
(7.3) for the surface tension. Whereas (7 .3)  expresses the surface tension of a wall in 
pT, the component of p along the wall, the pressure equation for the line tension 
expresses this quantity in p'", the component of p along the edge. The expression is 
given by 

which is proven for an edge formed by two hard walls, cf (5.22). Again, one easily 
proves that it also holds for an edge formed by a hard and a structureless soft wall 
and in case of an edge formed by two structureless soft walls. We expect its validity, 
with the usual averaging procedure, for an edge which involves a structured soft wall, 
too. The latter assumption, however, is probably hard to prove rigorously. 

Surprisingly, it turns out to be possible to generalize (7.3). One can evaluate pT at 
an arbitrary distance from an edge formed with a hard wall and show that the influence 
of the edge on p* does not alter the integral, cf (5.20). This generalized expression 
reduces to the density expression (7.1) if the distance to the wall is taken to vanish, 
since the diagonal components of the pressure tensor become equal to kBT times the 
density at a hard wall, cf (2.1 1). The same generalization is possible for (7.4), where 
it can be shown that the influence of a corner on pxx  leaves the integral unaltered. 
Reducing the distance to the corner, formed with a hard wall, transforms the generalized 
expressions to the density expression (7.2). 
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We have seen various expressions for the surface and line tension, all related to 
the routes (2.10) and (2.12) to the change in grand potential. The expressions are very 
symmetric: they are the same for all the models of a wall we have considered and, 
furthermore, each expression for the surface tension has its counterpart at the level of 
the line tension. The density expressions reveal that the density at a hard wall is related 
to thermodynamic quantities, a surprising fact. Probably of more practical use are the 
pressure equations since they are well suited to measuring surface and line tensions 
in a simulation. Especially the pressure equation for the structured soft wall is of 
immediate interest in view of the many investigations of the solid-fluid surface nowa- 
days. If, however, simulations will ever deal with edges or contact lines, the expressions 
for the line tension will certainly prove to be equally useful. 
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Appendix 1 

We prove the following properties of a pressure tensor near the hard wall in the plane 
z = o  

( A l . l )  

(A1.2) 

(A1.3) 

These properties all follow from the condition that the tensor is divergenceless near 
hard walls, (2.2) with 4'"= 0. 

First, we prove (Al.1). In terms of p" and p ,  Apr has the form 

Ap?(z) = p z " ( ~ ,  CO, Z )  - p .  (A1.4) 

The off-diagonal components of p vanish near a hard wall, far away from edges and 
corners 

pmqCO, CO, z)  = 0 a + P  (A1.5) 
in which case condition (2.2) on the divergence of p becomes 

a 
az 
- Apr(z)  = 0. (A1.6) 

Since Apr vanishes in the bulk fluid, at z =CO, it has to vanish at any distance z as 
stated by (A1.1). 

Secondly, we prove (A1.2). In terms of p"", ApK has the form 

A P X Y ,  2)  = P"(W, Y ,  z) -pYY(m, a, z) (A1.7) 
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in this case (2.2) becomes 

d d 
- APiXY, z )  = -gP2W, Y, z ) .  (A1.8) 

No derivative with respect to x appears since the tensor is translationally invariant in 
the x direction in the edge formed by the walls at y = 0 and z = 0, far away from the 
plane at x = 0. From (A1.8), we find 

1 dz Ahp;;(y, z )  = p Z y ( c o ,  y ,  CO) -pZy(co, y ,  0) = O .  (A1.9) 

The term p Z ) ' ( a ,  y ,  a) denotes an off-diagonal component of p near a hard wall, far 
away from the edges and vanishes due to (A1.5). The second term denotes an off- 
diagonal component at a hard wall which also vanishes, cf (2.11). Therefore, the 
derivative (A1.8) vanishes. Since the integral vanishes at y =CO, where the integrand 
vanishes, the integral has to vanish at any distance y ,  which implies (A1.2). 

00 

ay 0 

Finally, we prove (A1.3). The derivative of APEh with respect to x has the form 

a a 
- A~txhh(~, Y, Z )  (P"(x, Y ,  Z )  -P""(x, Y, CO) -pXx(x, a, 2)).  (A1.10) 
ax 

With (2.2), the derivative is rewritten as 

(Al.11) 

This yields for the derivative of the integral (A1.3) 

loa dy lox dz AP;h(X, Y, 2)  = dz [P'"(X, Y, Z)-Pyx(X, Y, a)];==, 
d X  lo= 

ax 5: Joa 

+ jox dy[p'"(x, y ,  z) -P'"(x, a, Z)l:=o. ( A l .  12) 

The off-diagonal components vanish at and near a hard wall due to (2.11) and (A1.5), 
respectively. The only remaining terms are the terms in the edges 

loz dy lom dz Aptth(X, y ,  Z )  = dzpYX(X, CO, z) + dyp'"(x, y ,  a). (A1.13) 

The arguments, based on the microscopic definition of p, (2.1), and the symmetry in 
the pair correlation function, that lead to (A1.5) also show that these terms vanish. 
Thus, the derivative (A1.13) vanishes and since the integral vanishes at x = a ,  the 
integral vanishes at any distance x, yielding (A1.3). 

Appendix 2 

We prove the following properties of the density and pressure tensor near the structured, 
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soft wall in the plane z = O  

a jcell dx dy loX dz n,( r )  - c$"Y U) = 0 
ax 

Ice,, dx dy Iow dz( Apf'(r) - zn,(r) 

(A2.1) 

(A2.2) 

where a cell denotes a unit of area far away from the hard walls. Both identities follow 
from condition (2.2) on the divergence of p. 

First, we prove (A2.1). Condition (2.2) is 

(A2.3) 

since n equals n, far away from the hard walls. Substituting the LHS into the integral 
in (A2.1), denoted by ZI, one obtains 

-II = ja> dy jOm dz[p""]",o:; + ja, dx jo dz[p'"]$2 + (A2.4) 

where xo and yo denote the lower boundaries of the cell. The periodicity of the tensor 
makes the first two terms vanish. The fact that the tensor vanishes completely at z = 0 
and that its off-diagonal components vanish in the bulk fluid shows that the third term 
also vanishes, which proves (A2.1). 

X 

dx dy[p 'x]~=o 

The proof of (A2.2) goes similarly. Condition (2.2) is 

Multiplying (A2.5) with z, integrating it over a unit of area and using the 
of p, we obtain 

a a 
dx dy loE dz z- Ap'" = - jcel, dx dy dz zn, - 4'" 

cell d Z  az 

and thus the integral in (A2.2), denoted as 12, can be written as 

I*= jceil dx dy loX d z i  (zAp"). 

Since Ap" vanishes in the bulk fluid at z =CO,  Z2 vanishes. 

Appendix 3 

We prove that the average (7.4) of the integrals 

a d o ,  = A loL dx loL dy jox dz n ( r ) (  x - L )  - 4'"( r )  
ax 

and 

(A2.5) 

periodicity 

(A2.6) 

(A2.7) 

(A3.1) 

(A3.2) 

vanish. It will be proven explicitly for dR, whereupon it follows for dR, by symmetry. 
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At first, we find it more convenient to shift the origin x, y = 0 to x, y = L. Denoting 
the new coordinates as r', dR, becomes 

a 
ax 

dR, = JoL dx' loL dy' loa2 dz' n(r ' )x '  7 4'"( r'). (A3.3) 

To be strict, we should have replaced n by n '  with n'(r') = n( r )  (and similarly for 4ext) 
but since the properties of n '  and n are essentially the same, we drop the prime. The 
density at a position r is evaluated in an expansion in the activity z, defined in (2.6) 
(the activity z should not be confused with the position z). 

a2 

n(r l )=  1 C N ( r l ) Z N  (A3.4) 
M = 1 

where the coefficients are of the form [lo] 

dr2 ,..., drN{F&(r l  ,..., rN)+ l}FN(r l  ,..., rN)  (A3.5) 

with 

F&(r l ,  . . . , rN)  = exp[-P( 4ext( rl)  +. . .+ ~$~ '~( r , ) ) ]  - 1 (A3.6) 

and FN(r l , .  . . , rN)  a function which depends only on the relative distances r,, and is 
short ranged, i.e. vanishes when one of the ry becomes large, except for N = 1 .  
Furthermore, FN is symmetric under permutations of its arguments. For N = 1, 2, 3 
we have 

F1= 1 (A3.7) 

N r l ,  r2) = f ( r 1 2 )  (A3.8) 

F3(rl r2, r3) =f(f(r12)f(r13)f(r23)+f(r12)f(rl3)+f(r12)f(r23)+f(r13)f(r23)) (A3*9) 

where f (  r V )  denotes the Mayer f function 

f ( r , )  = exp(-P+(r,)) - 1 (A3.10) 

and 4 stands for the interparticle potential. Inserting expansion (A3.5) into dR, kesults 
in the expansion 

m 

dR,= 1 d R N z N  
N = l  

with, dropping the prime of the arguments, 

(A3.11) 

a 
8x1 

- p  d o N  = A joL dx, dy, joa2 dz, dr2,  . . . , dr, F,(rl,. . . , rN)xl  - F > ( r , ,  . . . , rN). 

(A3.12) 

Due to the short ranged character of F,  and the fact that F" vanishes if all the zi are 
large, the integration over the z coordinates can just as well be taken from 0 to 00 

(A3.13) 
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The average (7.4) has the form 

Expansion (A3.11) gives 
a2 

with 

N 
1 L t a  

han, =- 2aL I L  d L ' ( z ) .  

(A3.14) 

(A3.15) 

(A3.16) 

We will show that all terms ARN vanish. 
To do so, we have to calculate the derivative d R N / d L  and integrate it over the 

increase of L. The derivative is simply calculated by dividing d o ,  by d L  with dL = AL. 
The integration is most easily performed if the dependence of the derivative on L can 
be brought from the integration boundary to the integrand. The first step to do this is 
partial integration 

= II + 1 2 .  (A3.17) 

The presence of L in the integration boundaries of II can be removed. If one changes 
the integration variables x, to xl, ( i  = 2 , .  . . , N, x,, = x1 -x,) ,  the xl, can be taken to 
range from 0 to CO because of the short ranged character of FN. The same substitution 
can be made for the y ,  with yl ,  ranging from -CO to CO. This range neglects the presence 
of the corner: at positions x, = L and y , ,  z1 b 0, the y ,  should be restricted to y ,  > 0. 
This restriction, however, only adds a correction of the order Lo to the integral which 
itself is of the order L. We obtain 

(A3.18) 

Finally, we use the periodicity of F& to remove the presence of L in the integration 
boundary of y1 

(A3.19) 

One would also like to remove the presence of L from the integration boundaries 
of 12. If it were not for the factor x1 , the integrand of I 2  would be periodic in x1 and 
y1 and the presence of L could be removed by restricting the integral over x1 and y ,  
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to one unit of area and changing the integration variables x,  and y ,  to x l ,  and y,,. The 
restriction on the integration over x1 and y ,  would be compensated for by multiplying 
the integral with a factor L*/(a ,a , ) .  The integration over the x l ,  and y l r  would range 
from -00 to 00. This range neglects the presence of edges but they only give a correction 
of order Lo. 

The periodicity of the integrand in x ,  is restored if the absolute coordinate x, can 
be replaced by a relative coordinate such as x I l .  We show that such a substitution, 
namely 

can indeed be made. 
Under integral 12, the term xlax, FN can be replaced by 

(A3.21) 

If FN is taken to be a function of the relative coordinates r i j ,  the RHS of (A3.21) can 
be written as 

the RHS of (A3.20) is equal to 

N a  N N a  
r = 2  ax, 1=2axll  

x i , - F ~ =  xi1 - F N .  

The difference between the RHS of (A3.22) and (A3.23) is 

a N N a  N N  

SE c c x , - F , - c  X I ,  c -FN 
, = I  , = , + I  ax, I = 2  J = 2  ax,, 

(A3.22) 

(A3.23) 

(A3.24) 

(A3 -25) 

Under the integral, the integration variables x1 and xi in the second term and x, and 
xj in the third term can be interchanged 

Therefore we find that S vanishes under the integral: 

s=o. 

(A3.27) 

(A3.28) 

(A3.29) 



4234 M J P Nijmeijer and J M J van Leeuwen 

This proves that the R H S  of (A3.20) and (A3.21) are the same under integral 12. Because 
(A3.21) is an allowed substitution, (A3.20) must be so. With this substitution, the 
integrand of I2 becomes periodic in x, and I2 can be written as 

L 

(A3.30) 

Note that apart from the prefactor L, I2 is independent of L. 
We have now brought the derivative d n N / d L  in such a form that we can perform 

the integration (A3.16). The derivative is the sum of Il and 12, cf (A3.17). The integral 
over I ,  has the form 

(A3.3 1) 

(A3.32) 

Characteristic of the integral is the fact that all x positions xi, i = 2, . . . , N should be 
below x l .  This restriction is easily removed 

x lom dz, , . . . , dz, F N F L  + O( L- ' )  (A3.33) 

the factor 1 / N  compensates for the fact that each particle in the integral (A3.33) can 
have the largest x coordinate, whereas this is always particle 1 in (A3.32). Adding A I ,  
and the similarly defined A I 2 ,  AI2  = 12/2L, we obtain 

-PARN =- I,,,, dxl dyl l-1 dX12, . . dy,, dz , , .  . . , ~ Z N F ~ N  
2 axa, 

(A3 -34) 

The term of order L-' vanishes in the thermodynamic limit. All the terms in the sum 
will give the same contribution to the integral. We can take the term with xI2  as 
exemplary and write the integral as 

(A3.35) 
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One has to apply one more partial integration with respect to x1 to see that this 
contribution vanishes 

m 

- P A f l ,  =-- N - l  la, dyl 1 dX12,. . . , d y l ~  d z l , .  . . , ~ ~ N X I Z F N [ F & ] ~ ~ ~  
2a,a, N -X 

1 N - 1  

a 
8x1 

dz1, . . . , dZN x I ~ F N -  FK (A3.36) 

where xo denotes the lower boundary of the unit cell. The first integral vanishes because 
of the periodicity of F;. Changing the order of integration in the second integral gives 

- p A a  N -  d z i , . . - , d z ~ x i z F N  

(A3 -37) 

which shows that the periodicity of FK also makes this integral vanish. Therefore, we 
have obtained the desired result 

A f l N = O .  (A3.38) 
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